COMPONENT 1: PHYSICAL AND INORGANIC CHEMISTRY MARK SCHEME GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf $=$ error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1.				a reversible reaction where the forward and reverse reactions occur at the same rate	1			1		
2.			$\begin{array}{llllll}\mathrm{H}_{2} \mathrm{O} & \mathrm{NH}_{3} & \mathrm{CH}_{4} & \mathrm{BF}_{3} & \text { must be in this order }\end{array}$		1		1			
3.			 showing four shared pairs including one where both electrons have come from the nitrogen atom (ignore charge)		1		1			
4.			$\delta-\mathrm{O}-\mathrm{H} \delta+\quad \delta-\mathrm{C}-\mathrm{H} \delta+\quad \delta+\mathrm{B}-\mathrm{Cl} \delta-\quad \delta+\mathrm{C}=\mathrm{O} \quad \delta-$ any two correct (1) all four correct (2)		2		2			
5.			xenon +2 0 reduction oxygen -2 0 oxidation each correct row (1) total (1) if all oxidation states correct but one or more error in oxidation/reduction column		2		2			

Question		Marking details	Marks available						
		AO1	AO2	AO3	Total	Maths	Prac		
6.			$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$		1		1		
7.		A ice B caesium chloride - both correct (1)	1			1			
8.		$\mathrm{I}_{2}<\mathrm{Br}_{2}<\mathrm{Cl}_{2} \quad$ correct reason needed for credit greater degree of freedom leads to greater entropy / solids have lowest entropy and gases have highest entropy	1			1			
9.		$\begin{align*} & K_{\mathrm{p}}=\frac{\left(\mathrm{NH}_{3}\right)^{2}}{\left(\mathrm{~N}_{2}\right)\left(\mathrm{H}_{2}\right)^{3}} \tag{1}\\ & \mathrm{~atm}^{-2} \tag{1} \end{align*}$	1	1		2	1		
10.		$\begin{align*} & \frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \tag{1}\\ & \mathrm{~T}_{2}=\frac{25}{24} \times 298=310 \mathrm{~K} \tag{1} \end{align*}$	1	1		2	1		
11.		$2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$		1		1			
		Section A total	5	10	0	15	2	0	

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12.	(a)	(i)		 Mass number Initial nuclide Final nuclide		2		2		
		(ii)	radioactivity causes mutations / destroys or damages DNA (1) alpha radiation most damaging / most ionising (1) platinum has a long half-life so it emits radioactivity very slowly / bismuth emits radioactivity much more quickly (1) ${ }^{190} \mathrm{Bi}$ is the most damaging (1)	2		2	4			
	(b)	(i)	Indicative content - atomic spectrum contains series of discrete lines on a dark background - these lines get closer together at higher energy until they overlap - there are several series of lines credit could be from a diagram - energy released when electron falls to lower energy state - discrete lines correspond to specific energies - this suggests that electrons can only move between certain fixed levels - frequency of light emitted corresponds to the difference between energy levels - the lines get closer together at higher energy within a series because the electron energy levels get closer together	4		2	6			

© WJEC CBAC Ltd.

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12.	(b)	(ii)		aluminium has gradual increase in ionisation energies (1) with jumps between $3^{\text {rd }}$ and $4^{\text {th }}$ ionisations and $11^{\text {th }}$ and $12^{\text {th }}$ ionisations (1) jumps occur as electrons are in different shells / link between 2,8,3 and graph arrangements (1)	1	2		3		
			Question 12 total	7	4	4	15	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13.	(a)			sodium oxide gives colourless solution, magnesium oxide forms white precipitate (1) $\begin{align*} & \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} \tag{1}\\ & \left(\text { accept } \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}\right) \end{align*}$	1	1		2		1
	(b)		$\mathrm{add} \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) / \mathrm{OH}^{-}(\mathrm{aq}) \quad(1)$ NaCl gives colourless solution, MgCl_{2} gives white precipitate (1)		2		2		2	
	(c)		$\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$ do not react with $\mathrm{H}_{2} \mathrm{O}$, therefore pH is 7 (1) $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ reacts with $\mathrm{H}_{2} \mathrm{O}$ forming $\mathrm{CH}_{3} \mathrm{COOH}$ and OH^{-}, therefore pH is greater than 7 (1)	2			2			
	(d)		$\Delta_{\mathrm{t}} H=\Delta_{\mathrm{at}} H \mathrm{Cu}+$ I.E.Cu $+\Delta_{\mathrm{at}} H \mathrm{~F}_{2}+$ E.A.F $+\Delta_{\text {lat orm }} H \mathrm{CuF}_{2}$ (1) doubling value for forming 2 F and $2 \mathrm{~F}^{-}$(1) (accept from Born-Haber cycle) $\begin{align*} & \Delta_{\mathrm{t}} H \mathrm{HFF}_{2}=339+2705+158-696-3037 \\ & \Delta_{\mathrm{f}} H \mathrm{HCF}_{2}=-531 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ award (4) for correct answer only (cao) error carried forward (ecf) possible		4		4	4		
			Question 13 total	3	7	0	10	4	3	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
14.	(a)			pressure increases (1) number of gas molecules increases / more moles of gas on product side of equation (1)		2		2		
	(b)	(i)	when concentration doubles, rate doubles (1) therefore first order or rate is proportional to concentration (must give reason to get this mark) (1) or calculate values for k or rate/concentration ratios (1) state that these are constant (1)			1 1	2	1		
		(ii)	rate determining step must have one $\mathrm{N}_{2} \mathrm{O}_{5}$ molecule as reactant (1) mechanism A matches this rate equation (1) (must give reason to get this mark)			2	2			
	(c)		appropriate readings correctly made from graph e.g. $y=4.4 ; x=0.35 \times 10^{-3}$ gradient $=-12500 \pm 500$ (accept positive value) $\begin{align*} & E_{a}=12500 \times 8.31=103875 \\ & E_{a}=104\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ award (4) for cao award (3) for negative value or answer in $\mathrm{J} \mathrm{mol}^{-1}$ ecf possible		1 1	1 1	4	4		
			Question 14 total	0	4	6	10	5	0	

© WJEC CBAC Ltd.

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
16.	(a)	(i)		$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$		1		1		
		(ii)	acidify with $\mathrm{HNO}_{3}(\mathrm{aq})$, then add $\mathrm{AgNO}_{3}(\mathrm{aq})$ (1) cream precipitate is formed (1)	2			2		2	
	(b)	(i)	hydrogen chloride	1			1		1	
		(ii)	sulfur dioxide	1			1		1	
	(c)		$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}(1)$ chlorine is simultaneously oxidised and reduced (1) from oxidation state 0 to -1 and +1 (1)		3		3			
	(d)		$\begin{align*} & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COO}-\right]}{\left[\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COOH}\right]} \tag{1}\\ & {\left[\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]=0.150 \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1}\\ & {\left[\mathrm{H}^{+}\right]=\frac{\left(7.94 \times 10^{-5}\right)(0.1)}{0.150}} \tag{1}\\ & {\left[\mathrm{H}^{+}\right]=5.29 \times 10^{-5}} \\ & \mathrm{pH}=-\log 5.29 \times 10^{-5}=4.28 \tag{1}\\ & \text { ecf possible } \end{align*}$	1	1 1		4	1 1 1	4	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
16.	(e)			solution contains a large amount of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COO}^{-}$ions (accept correct equations) (1) when an acid is added, the $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COO}^{-}$ions react with the H^{+}ions, removing them from solution and keeping the pH constant (1) when an alkali is added, the $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COOH}$ reacts with the OH^{-}ions, removing them from solution and keeping the pH constant (accept answer in terms of H^{+}ions reacting with OH^{-}ions) (1)	3			3		
			Question 16 total	8	7	0	15	3	8	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
17.	(a)			sample contains potassium ions / Q or Z are potassium / K			1	1		1
	(b)	(i)	to ensure that all the water has been lost	1			1		1	
		(ii)	$1.081 / 18.02=0.06 \mathrm{~mol}(1)$ 0.06 moles water in 0.01 mol compound, so $x=6$ (1) no ecf			2	2	2		
	(c)	(i)	$\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}$		1		1			
		(ii)	excess needed to ensure that all the sulfate has been precipitated (1) add more barium chloride to filtrate to ensure there is no more precipitate formed / calculate volume needed and measure and add excess (1)		2		2		2	
		(iii)	$25 \times 0.1 \div 1000=0.0025 \mathrm{~mol}$ of schönite (1) moles barium sulfate $=1.166 / 233.1=0.005(1)$ $y=0.005 / 0.0025=2(1)$			3	3	3		
	(d)		formula is $\mathrm{K}_{2} \mathrm{Mg}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad$ (2) award (1) for identification of Mg if answer incorrect			2	2			
			Question 17 total	1	3	8	12	5	4	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
18.	(a)			 (1) (1) award (1) only if ligands correct but no attempt at 3D representation of bonds	2			2		
	(b)	(i)	$\begin{align*} & f=\frac{3.00 \times 10^{8}}{590 \times 10^{-9}}=5.08 \times 10^{14}(\mathrm{~Hz}) \tag{1}\\ & E=3.37 \times 10^{-19}(\mathrm{~J}) \tag{1} \end{align*}$ award (2) for cao ecf possible		2		2	2		
		(ii)	Indicative content - $\left[\mathrm{CoCl}_{4}\right]^{2-}$ - red light is absorbed (shown in spectrum) - ligands cause splitting of d-orbitals into higher and lower energy levels - Co has a vacancy in the higher energy level - electrons in the lower level can absorb energy to move to the higher level - energy difference between higher and lower energy levels corresponds to the frequency/wavelength of red light credit awarded for an appropriately labelled diagram	5		1	6			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
18.	(b)	(iii)		$\begin{aligned} & \text { value determined from graph }-0.067 \pm 0.001 \text { (1) } \\ & \text { calculated value }=0.06525 \text { (given to min } 3 \text { sig figs) (1) } \\ & \text { graph does not give as precise an answer / precision lost using } \\ & \text { graph / mathematical equation gives answer to the same } \\ & \text { number of significant figures as absorption (1) } \end{aligned}$		2	1	3	1	3
	(c)	(i)	$\begin{gathered} K_{\mathrm{c}}=\frac{\left[\left(\mathrm{CoCl}_{4}\right)^{2-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\left(\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right)^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{4}} \end{gathered}$		1		1			
		(ii)	concentration of $\mathrm{H}_{2} \mathrm{O}=0.48 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}=0.12 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration of $\mathrm{Cl}^{-}=0.18 \mathrm{~mol} \mathrm{dm}^{-3}$ all three concentrations stated explicitly or shown in equation (2) any one (1) $\begin{equation*} K_{\mathrm{c}}=7.77 \tag{1} \end{equation*}$ award (3) for cao $\mathrm{mol}^{2} \mathrm{dm}^{-6}$ (1)	1	3		4	4		
	(d)		cloudiness is white precipitate / precipitate formed by reaction of chloride with silver ions/ insoluble silver chloride (1) concentration of chloride ions decreased significantly (1) equilibrium will shift to left hand side according to Le Chatelier's principle / to produce more chloride ions / to replace chloride ions removed (1) more $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ formed $/[\mathrm{CoCl}]^{2-}$ converted to $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and these are different colours / leading to colour change (1)		1 1	1 1	4		4	
			Question 18 total	8	10	4	22	7	7	

[^0]| Question | | | Marking details | Marks available | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | A01 | AO2 | AO3 | Total | Maths | Prac |
| 19. | (a) | (i) | | any two for (1) each up to max 2
 - eye protection for solution spillage when filling burette (1)
 - care to avoid burns whilst heating (1)
 - wear lab coat as sulfuric acid is corrosive, potassium manganate(VII) stains clothing (1) | 2 | | | 2 | | 2 |
| | | (ii) | $\begin{align*} & \text { mean titre }=(15.00+14.90+14.95) \div 3=14.95 \tag{1}\\ & \text { moles } \mathrm{MnO}_{4}^{-}=0.020 \times 0.01495=2.99 \times 10^{-4} \\ & \text { moles } \mathrm{Fe}^{2+}=1.495 \times 10^{-3} \tag{1}\\ & \text { conc } \mathrm{Fe}^{2+}=1.495 \times 10^{-3} / 0.025=0.0598 \mathrm{~mol} \mathrm{dm}^{-3}(1) \\ & \text { award }(3) \text { for cao } \\ & \text { ecf possible } \tag{1} \end{align*}$ | | 1
 1
 1 | | 3 | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 3 |
| | | (iii) | ```moles \(\mathrm{MnO}_{4}^{-}=0.020 \times 0.0191=3.82 \times 10^{-4}\) moles \(\mathrm{Fe}^{2+}=1.91 \times 10^{-3}\) moles \(\mathrm{Fe}^{3+}=1.91 \times 10^{-3}-1.495 \times 10^{-3}=4.15 \times 10^{-4}\) \[\begin{equation*} \text { conc } \mathrm{Fe}^{3+}=4.15 \times 10^{-4} / 0.025=0.0166 \mathrm{~mol} \mathrm{dm}^{-3} \tag{1} \end{equation*} \] conc \(\mathrm{Fe}^{3+}=4.15 \times 10^{-4} / 0.025=0.0166 \mathrm{~mol} \mathrm{dm}^{-3}\) \\ award (3) for cao ecf possible```
 or $\begin{equation*} \text { conc } \mathrm{Fe}^{2+}=1.91 \times 10^{-3} / 0.025=0.0764 \mathrm{~mol} \mathrm{dm}^{-3} \tag{2} \end{equation*}$ $\text { conc } \mathrm{Fe}^{3+}=0.0764-0.0598=0.0166 \mathrm{~mol} \mathrm{dm}^{-3}$ | | 1 | $\begin{align*} & 1 \tag{1}\\ & 1 \end{align*}$ | 3 | 3 | 3 |

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
19.	(a)	(iv)		burette accurate to ± 0.10, therefore apparatus error about 1\% (1) three results are reliable since they are within $0.10 \mathrm{~cm}^{3}$ of each other (1) improve accuracy by using an instrument to measure permanent colour change rather than visual estimation (1)			3	3		3
	(b)		any three for (1) each up to max 3 Method A would produce a result with a low Fe^{2+} concentration since: - reduction of Fe^{3+} might not be complete (1) - Fe^{2+} might re-oxidise to Fe^{3+} prior to titration (1) - there is no guarantee of complete transfer of Fe^{2+} following reduction (1) - Method B depends on use of digital apparatus so should be more accurate (1)			3	3		3	
			Question 19 total	2	4	8	14	5	14	

COMPONENT 1: PHYSICAL AND INORGANIC CHEMISTRY
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	5	10	0	15	2	0
12.	7	4	4	15	0	0
13.	3	7	0	10	4	3
14.	0	4	6	10	5	0
15.	2	5	0	7	4	0
16.	8	7	0	15	3	8
17.	1	3	8	12	5	4
18.	8	10	4	22	7	7
19.	2	4	8	14	5	14
Totals	36	54	30	120	35	36

[^0]: © WJEC CBAC Ltd.

